Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract MotivationSpatial omics data demand computational analysis but many analysis tools have computational resource requirements that increase with the number of cells analyzed. This presents scalability challenges as researchers use spatial omics technologies to profile millions of cells. ResultsTo enhance the scalability of spatial omics data analysis, we developed a rasterization preprocessing framework called SEraster that aggregates cellular information into spatial pixels. We apply SEraster to both real and simulated spatial omics data prior to spatial variable gene expression analysis to demonstrate that such preprocessing can reduce computational resource requirements while maintaining high performance, including as compared to other down-sampling approaches. We further integrate SEraster with existing analysis tools to characterize cell-type spatial co-enrichment across length scales. Finally, we apply SEraster to enable analysis of a mouse pup spatial omics dataset with over a million cells to identify tissue-level and cell-type-specific spatially variable genes as well as spatially co-enriched cell types that recapitulate expected organ structures. Availability and implementationSEraster is implemented as an R package on GitHub (https://github.com/JEFworks-Lab/SEraster) with additional tutorials at https://JEF.works/SEraster.more » « less
- 
            Abstract Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we develop STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit athttps://github.com/JEFworks-Lab/STalignand as Supplementary Software with additional documentation and tutorials available athttps://jef.works/STalign.more » « less
- 
            Mathelier, Anthony (Ed.)Abstract Motivation Single-cell transcriptomics profiling technologies enable genome-wide gene expression measurements in individual cells but can currently only provide a static snapshot of cellular transcriptional states. RNA velocity analysis can help infer cell state changes using such single-cell transcriptomics data. To interpret these cell state changes inferred from RNA velocity analysis as part of underlying cellular trajectories, current approaches rely on visualization with principal components, t-distributed stochastic neighbor embedding and other 2D embeddings derived from the observed single-cell transcriptional states. However, these 2D embeddings can yield different representations of the underlying cellular trajectories, hindering the interpretation of cell state changes. Results We developed VeloViz to create RNA velocity-informed 2D and 3D embeddings from single-cell transcriptomics data. Using both real and simulated data, we demonstrate that VeloViz embeddings are able to capture underlying cellular trajectories across diverse trajectory topologies, even when intermediate cell states may be missing. By considering the predicted future transcriptional states from RNA velocity analysis, VeloViz can help visualize a more reliable representation of underlying cellular trajectories. Availability and implementation Source code is available on GitHub (https://github.com/JEFworks-Lab/veloviz) and Bioconductor (https://bioconductor.org/packages/veloviz) with additional tutorials at https://JEF.works/veloviz/. Datasets used can be found on Zenodo (https://doi.org/10.5281/zenodo.4632471). Supplementary information Supplementary data are available at Bioinformatics online.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
